Устройство системы пуска двигателя автомобиля


Система запуска двигателя

Система запуска двигателя, как следует из названия, предназначена для запуска двигателя автомобиля. Система обеспечивает вращение двигателя со скоростью, при которой происходит его запуск.

На современных автомобилях наибольшее распространение получила стартерная система запуска. Система запуска двигателя входит в состав электрооборудования автомобиля. Питание системы осуществляется постоянным током от аккумуляторной батареи.

Система запуска включает стартер с тяговым реле и механизмом привода, замок зажигания и комплект соединительных проводов.

Стартер создает необходимый крутящий момент для вращения коленчатого вала двигателя. Он представляет собой электродвигатель постоянного тока. Конструктивно стартер состоит из статора (корпуса), ротора (якоря), щеток со щеткодержателем, тягового реле и механизма привода.

Тяговое реле обеспечивает питание обмоток стартера и работу механизма привода. Для выполнения своих функций тяговое реле имеет обмотку, якорь и контактную пластину. Внешнее подключение к тяговому реле осуществляется через контактные болты.

Механизм привода предназначен для механической передачи крутящего момента от стартера на коленчатый вал двигателя. Конструктивными элементами механизма являются: рычаг привода (вилка) с поводковой муфтой и демпферной пружиной, муфта свободного хода (обгонная муфта), ведущая шестерня. Передача крутящего момента осуществляется путем зацепления ведущей шестерни с зубчатым венцом маховика коленчатого вала.

Замок зажигания при включении обеспечивает подачу постоянного тока от аккумуляторной батареи к тяговому реле стартера.

Система запуска, устанавливаемая на бензиновые и дизельные двигатели, имеет аналогичную конструкцию. Для облегчения запуска дизельных двигателей в холодное время система запуска может оборудоваться свечами накаливания, которые подогревают воздух во впускном коллекторе. С этой же целью на автомобилях применяются системы предпускового подогрева.

Дальнейшим развитием системы запуска двигателя являются: автоматическийо запуск двигателя, интеллектуальный доступ в машину и запуск двигателя без ключа, система Стоп-Старт.

Работа системы запуска осуществляется следующим образом. При повороте ключа в замке зажигания ток от аккумуляторной батареи поступает на контакты тягового реле. При протекании тока по обмоткам тягового реле происходит втягивание якоря. Якорь тягового реле перемещает рычаг механизма привода и обеспечивает зацепление ведущей шестерни с зубчатым венцом маховика.

При движении якорь также замыкает контакты реле, при котором происходит питание током обмоток статора и якоря. Стартер начинает вращаться и раскручивает коленчатый вал двигателя.

Как только происходит запуск двигателя, обороты коленчатого вала резко возрастают. Для предотвращения поломки стартера срабатывает обгонная муфта, которая отсоединяет стартер от двигателя. При этом стартер может продолжать вращаться.

При повороте ключа в замке зажигания стартер останавливается. Возвратная пружина тягового реле перемещает якорь, который в свою очередь возвращает механизм привода в исходное положение.

Источник

Система пуска обеспечивает первоначальное проворачивание коленчатого вала при запуске двигателя. Для того чтобы двигатель самостоятельно начал работать, его коленчатому валу нужно сообщить определенную начальную (пусковую) частоту вращения. Для этих целей используется электрический стартер, обеспечивающий пусковую частоту вращения коленчатого вала: для бензиновых двигателей 40…100 об/мин, а для дизелей до 250 об/мин.
Пусковая частота зависит от условий смесеобразования и зажигания двигателя и является минимальной частотой вращения коленчатого вала, при которой в цилиндрах начинаются вспышки.

Мощность стартера зависит от момента сопротивления проворачиванию коленчатого вала и пусковой частоты. Момент сопротивления проворачиванию пропорционален рабочему объему двигателя и складывается из следующих составляющих:

— момент сил трения между поверхностями сопряжения деталей двигателя и во вспомогательных механизмах, связанных с коленчатым валом;

— момент инерционных сил, возрастающих при увеличении оборотов в процессе пуска двигателя;

— момент сопротивления, возникающий из-за процессов сжатия, происходящих в цилиндрах двигателя.

На специальной и тракторной технике некоторые двигатели имеют декомпрессионный механизм для облегчения пуска.

Схемы систем электростартерного пуска бензиновых двигателей отличаются между собой незначительно (рис. 2.1). В системах управления электростартером предусмотрены электромагнитные тяговые реле

с
механизмом привода
,
дополнительные реле
,
реле блокировки
, обеспечивающее дистанционное включение, автоматическое отключение стартера от АКБ после пуска двигателя и предотвращение включения стартера при работающем двигателе.

Источником энергии электростартерного пуска является стартерная АКБ

. В электростартерах используют
электродвигатели постоянного тока
. Характеристики стартерного электропривода с электродвигателями постоянного тока последовательного или смешанного возбуждения хорошо согласуются с характером нагрузки, создаваемой поршневым двигателем при пуске.

На тракторной, специальной, а также автомобильной технике, работающей в особых климатических условиях, часто применяются электрические устройства для облегчения пуска

.

Классический стартер (рис. 2.6) представляет собой электродвигатель постоянного тока с механизмом привода, управляемым тяговым реле и питанием от аккумуляторной батареи. Обычно такие стартеры имеют шестерню на валу якоря, с помощью которой осуществляется зубчатое зацепление с венцом маховика двигателя. При этом передаточное отношение шестеренного привода составляет 10…18 и ограничивается прочностными характеристиками зубьев привода.

Сила тока в обмотках стартера может составлять 200…500 А и выше. По мере увеличения частоты вращения якоря сила тока в обмотках уменьшается и соответственно уменьшается момент на валу якоря. Такой закон изменения крутящего момента наиболее благоприятен для пуска двигателя, так как в начале проворачивания коленчатого вала момент сопротивления наибольший.

Обычно стартеры имеют конструкцию, где статорная обмотка в них соединена последовательно с обмоткой якоря (рис. 2.2) – эти электродвигатели имеют последовательное возбуждение. Крутящий момент стартера зависит от двух факторов: магнитного поля статора и тока якоря, поэтому электродвигатель с последовательным возбуждением предпочтительнее, когда требуется создать большой крутящий момент. При включении стартера, в момент пуска электродвигателя, потребляемый ток максимален и ограничивается только сопротивлением обмоток. Такие стартеры могут развивать без нагрузки очень высокие обороты, и поэтому не рекомендуется их запускать вхолостую.

Рис. 2.1. Типичная схема электростартерного пуска

Рис. 2.2. Электродвигатель постоянного тока с последовательным возбуждением:

а) принципиальное устройство;

б) цепь стартера с последовательным возбуждением

1-обмотка возбуждения; 2-полюс магнита (магнитопровод); 3-якорь; 4-щетки; 5-коллектор; 6-АКБ; 7-замок зажигания

Кроме электродвигателей с последовательным возбуждением

, также существуют и электродвигатели смешанного возбуждения, независимого и электродвигатели с возбуждением от постоянных магнитов (рис. 2.3).

Электродвигатели с независимым питанием обмотки возбуждения

(рис. 2.3 д) в системах электростартерного пуска автомобильной и тракторной техники не применяются, так как на борту один пусковой источник – АКБ.

Электродвигатели с параллельным возбуждением

(рис. 2.3. а) в автомобильных электростартерах неэффективны при эксплуатации в холодных условиях (–20 ºС), а также имеют жесткую характеристику возбуждения, которая недопустима при малых передаточных отношениях, так как это может привести к поломке зубьев и привода.

Смешанное возбуждение стартерных электродвигателей

(рис. 2.3 в) позволяет объединить достоинства благоприятной характеристики последовательного возбуждения с плавностью хода и ограничением максимальных оборотов благодаря параллельному возбуждению. Такие электродвигатели имеют умеренно жесткую характеристику возбуждения.

Рис. 2.3. Типы возбуждения стартерных электродвигателей и их характеристики:

а) параллельное; б) последовательное; в) смешанное; г) от постоянных магнитов; д) независимое

В современных электростартерах чаще стала использоваться конструкция с независимым и неуправляемым возбуждением от постоянных магнитов

. Такие стартеры в своей конструкции имеют понижающий планетарный редуктор. Здесь сочетается относительно жесткая характеристика возбуждения и минимальная пусковая частота при максимальной нагрузке.
2.2. Электрический стартер с последовательным и смешанным возбуждением

Стартер с предварительным зацеплением

Рассмотрим устройство и принцип работы стартера с предварительным зацеплением (рис. 2.4). Питание стартерного электродвигателя 10 осуществляется от АКБ через замкнутые контакты 1 тягового электромагнитного реле. При замыкании контактов выключателя S
приборов и стартера, дополнительного реле и реле блокировки, втягивающая 4 и удерживающая 5 обмотки тягового реле подключаются к аккумуляторной батарее. Якорь 6 тягового реле притягивается к магнитопроводу электромагнита и с помощью штока 7 и рычага 9 механизма привода вводит шестерню 13 в зацепление с зубчатым венцом 14 маховика двигателя.

Рис. 2.4. Схема управления электростартера с предварительным зацеплением: 1-контактные болты; 2-подвижная контактная пластина; 3-возвратная пружина; 4,5-соответственно втягивающая и удерживающая обмотки тягового реле; 6-якорь тягового реле; 7-шток; 8-обмотка возбуждения; 9-рычаг механизма привода; 10-электростартер; 11-поводковая муфта; 12-муфта свободного хода; 13-шестерня привода; 14-зубчатый венец маховика

После пуска двигателя, муфта 12 свободного хода (рис. 2.5) предотвращает передачу вращающего момента от маховика к валу якоря электродвигателя. Ролики поджаты пружинами в направлении вращения якоря, и они либо заклиниваются между ведущим и ведомым звеньями муфты, когда скорость якоря равна скорости двигателя, либо дают им свободно вращаться, когда двигатель развивает скорость, больше чем якорь.

Шестерня привода из зацепления с венцом маховика не выходит до тех пор, пока замкнуты контактные болты 1 (рис. 2.4). При размыкании выключателя S

втягивающая и удерживающая обмотки тягового реле подсоединяются к АКБ последовательно через силовые контактные болты 1. Так как число витков у обеих обмоток одинаково и по ним при последовательном соединении проходит ток одной и той же силы, то при разомкнутом выключателе
S
в них возникают два равных, но противоположно направленных магнитных потока. Магнитопровод электромагнита размагнитится, и возвратная пружина переместит якорь 6 реле в исходное нерабочее положение, тем самым выводя шестерню из зацепления с венцом маховика. При этом разомкнуться и силовые контактные болты 1. Типичная конструкция стартера с предварительным зацеплением показана на рис. 2.6.

Рис. 2.5. Муфта свободного хода:

1-буферная пружина; 2-наружное обойма (ведущее звено); 3-внутренняя обойма (ведомое звено); 4-ролики; 5-шестерня

Система пуска автомобиля назначение и технические требования

Система пуска автомобиля служит для автоматического дистанционного пуска двигателя и состоит из стартера, механизма зацепления, электромагнитного реле и вспомогательного реле. Основными техническими требованиями к системе пуска являются:

  • надежная работа стартера при 40-50 тыс. км пробега;
  • надежная работа стартера при пуске до температуры 15оС
  • надежная работа механизма зацепления и электромагнитных реле;

электрическая проводка питания стартера и реле надежно крепится. Стартеры, например, для легковых автомобилей СТ 29.3708, СТ 230-62, для грузовых автомобилей СТ 142 Б, СТ 130 Б потребляют ток от 550 до 850 А с частотой вращения до 5 тыс. мин-1 с последующим снижением тока до 80-100 А.

Система пуска двигателя: конструктивные особенности и принцип действия электрического запуска ДВС

Начнем с того, что на раннем этапе двигатели автомобиля запускались вручную. Для этого использовалась особая заводная рукоятка, которая вставлялась в специальное отверстие, после чего водитель самостоятельно проворачивал коленчатый вал.

В дальнейшем появилась система электрического пуска, которая в самом начале была не совсем надежной. По этой причине на многих моделях электрический пуск комбинировали с возможностью ручного запуска, что давало возможность запустить двигатель в случае возникновения проблем с электрозапуском. Затем от такой схемы полностью отказались, так как общая надежность электрических систем значительно возросла.

Итак, система запуска (часто называется стартерная система пуска двигателя) состоит из механических и электрических узлов и агрегатов. Как уже было сказано, главной задачей является проворачивание двигателя для запуска.

Основными элементами в схеме электрического пуска двигателя выступают:

  • стартерная цепь;
  • стартер;
  • аккумулятор;

В двух словах, стартерная цепь фактически является электроцепью, по которой электрический ток подается от АКБ к стартеру. В такую цепь входит провод, который соединяет аккумулятор и стартер, «масса» на кузов автомобиля, а также различные клеммы и соединения, по которым идет пусковой ток.

Что касается аккумулятора, основной задачей является обеспечение необходимого напряжения для работы стартера. Важно, чтобы АКБ имела нужную емкость и уровень заряда не ниже 70%, что позволяет стартеру прокручивать коленвал ДВС с необходимой для запуска частотой.

Стартер представляет собой электромотор. На валу стартера установлена шестерня, которая после подачи напряжения на стартер входит в зацепление с зубчатым венцом на маховике двигателя. Так реализована передача крутящего момента от стартера на коленвал двигателя.

Еще отметим, что стартер потребляет большой пусковой ток. При этом для включения и выключения стартера используется слаботочный переключатель, более известный как замок зажигания. Данный элемент осуществляет управление специальным реле, а также блокировочными выключателями стартера (при наличии).

Вернемся к общему устройству элементов системы. Как уже говорилось, стартер с тяговым реле представляет собой электродвигатель постоянного тока. Стартер состоит из статора, который является корпусом, ротора (якорь), а также щеток со щеткодержателем, тягового реле и механизма привода.

Тяговое реле обеспечивает питание обмоток стартера, а также позволяет работать механизму привода. Указанное тяговое реле включает в себя обмотку, якорь, контактную пластину. Электрический ток подается на тяговое реле через специальные контактные болты.

Механизм привода нужен для передачи крутящего момента от стартера на коленвал. Основными элементами конструкции является рычаг привода или вилка, которая имеет поводковую муфту, демпферная пружина, а также обгонная муфта и ведущая шестерня. Указанная шестерня входит в зацепление с зубчатым венцом маховика, который установлен на коленвалу. Замок зажигания после поворота ключа в положение «старт» отвечает за подачу постоянного тока от АКБ на тяговое реле стартера.

Разновидности системы дистанционного запуска

На сегодняшний день существует два типа удаленного запуска двигателя в автомобиле.

  • Система запуска, регулируемая водителем. Такая схема является наиболее оптимальной и безопасной. Но осуществима она только в том случае, если владелец машины находится на небольшом расстоянии от автомобиля (в пределах 400 метров). Автомобилист сам контролирует запуск мотора с помощью нажатия кнопки на брелке или в приложении на своем смартфоне. Только получив команду от водителя, двигатель начинает свою работу.
  • Запрограммированное включение двигателя в зависимости от ситуации. Если водитель находится далеко (например, автомобиль был оставлен на ночь на платной стоянке, а не во дворе у дома), запуск ДВС можно настроить на определенные условия: запуск в заданное время;
  • при понижении температуры мотора до определенных значений;
  • при снижении уровня заряда аккумулятора и т.д.

Система воздушного пуска двигателя

Система воздушного пуска является еще одним решением, которое позволяет прокручивать коленчатый вал ДВС. Для запуска мотора используется сжатый воздух. При этом такое пневматическое оборудование, как правило, на автомобилях и другой технике не используется, однако пусковые системы данного типа можно встретить на стационарных двигателях внутреннего сгорания.

Если говорить о конструкции, устройство системы воздушного пуска двигателя предполагает наличие следующих элементов:

  • воздушный баллон;
  • электроклапаны;
  • маслоотстойник;
  • обратный клапан;
  • воздухораспределитель;
  • пусковые клапаны;
  • трубопроводы;

Принцип работы системы воздушного запуска ДВС основан на том, что сжатый в воздушном баллоне воздух под давлением подается в коробку-распределитель, далее проходит через фильтры в редуктор и поступает к электропневмоклапану.

Далее необходимо нажать кнопку «пуск», после чего клапан открывается, затем воздух из воздухораспределителя проходит через пусковые клапаны и попадает в цилиндры двигателя, создавая давление и раскручивая коленвал. Когда обороты достигают нужной частоты, двигатель запускается.

Добавим, что такие силовые установки дополнительно оснащены электрической системой пуска от стартера, что позволяет завести агрегат в том случае, если с воздушным пуском, который является основным способом, имеются какие-либо проблемы или произошла поломка.

Что представляет собой

В современных автомобилях реализована электрическая система пуска двигателя. Также ее часто называют стартерной системой пуска. Одновременно с вращением коленвала в работу включается система ГРМ, зажигания и топливоподачи. Происходит сгорание топливовоздушной смеси в камерах сгорания и поршни проворачивают коленвал. После достижения определенных оборотов коленчатого вала двигатель начинает работать самостоятельно, по инерции.

Запуск двигателя

Чтобы запустить двигатель, нужно достичь определенной частоты вращения коленчатого вала. Для разных типов двигателей это значение отличается. Для бензинового мотора минимально необходимо 40-70 об/мин, для дизельного – 100-200 об/мин.

На начальном этапе автомобилестроения активно использовалась механическая система пуска с помощью заводной рукоятки. Это было ненадежно и неудобно. Сейчас от таких решений отказались в пользу электрической системы запуска.

Стартер автомобиля

Автомобильным двигателям внутреннего сго­рания требуется помощь в запуске.

Системы пуска двигателей состоят из следующих ком­понентов:

  • Электродвигатель постоянного тока (стар­тер);
  • Коммутационная аппаратура и блоки управления;
  • Аккумуляторная батарея;
  • Проводка.

Обороты стартера, гораздо большие, чем обороты коленчатого вала двигателя, со­гласуются с оборотами коленчатого вала двигателя через редуктор с подходящим передаточным соотношением (1/10 — 1/20), расположенный между шестерней стартера и зубчатым венцом маховика двигателя. Небольшой стартер способен развить необ­ходимые обороты для надежного пуска дви­гателя (двигателям с искровым зажиганием требуется 60-100 мин -1 ; дизельным двигате­лям — 80-200 мин -1 ). Компрессия и деком­прессия в цилиндрах означает, что момент, необходимый для проворачивания коленча­того вала, значительно разнится, в результате чего также значительно колеблется мгновен­ная скорость вращения. На рис. «График оборотов коленчатого вала двигателя и пускового тока при холодном запуске двигателя» показан типичный график оборотов двигателя и тока стартера при холодном пуске.

Сам стартер должен удовлетворять сле­дующим техническим требованиям:

  • Готовность к работе в любое время;
  • Достаточная пусковая мощность при раз­ных температурах;
  • Длительный срок службы;
  • Надежность конструкции;
  • Малая масса и компактные размеры;
  • Отсутствие необходимости в обслужи­вании.

Конструктивные особенности стартера

Для создания необходимой топливно-воздушной смеси для двигателей с искровым зажиганием и температуры автоматическое воспламенения для дизельных двигателей стартер должен вращать коленвал ДВС с определенной минимальной скоростью. Частота вращения коленчатого вала двигателя сильно зависит от типа двигателя, его рабочего объема, числа цилиндров, степени сжатия, по­терь на трение, дополнительных нагрузок, соз­даваемых при работе двигателя, системы управ­ления подачей топлива, сорта используемого масла и окружающей температуры.

Вообще, пусковой момент и пусковая ча­стота вращения при снижении температуры требуют постепенного увеличения пусковой мощности. Однако создаваемая пусковой ак­кумуляторной батареей мощность падает с по­нижением температуры, так как увеличивается ее внутреннее сопротивление. Эта противоре­чащая взаимосвязь требований к электриче­ской нагрузке и доступной мощности озна­чает, что наихудшим режимом работы для системы пуска ДВС является холодный пуск.

Из-за большого потребляемого стартером тока падение напряжения на питающих про­водах значительно влияет на характеристики стартера.

Классификация систем пуска двигателя

Автоматические система пуска двигателя имеет номинальную мощность до 2,5 кВт при номинальном напряжении 12 В. Она может запускать двигатели с искровым зажиганием рабочим объемом до 7 л и дизельные двига­тели рабочим объемом до 3 л.

Стартеры можно классифицировать по следующим критериям, согласно их техни­ческим типам:

  • Тип передачи мощности: стартер без редук­тора или стартер с редуктором;
  • Тип создания магнитного поля в электро­двигателе: с постоянным магнитом или с электрическим возбуждением;
  • Тип зацепления: скользящая шестерня, инерционный привод стартера (бендикс) или предварительное зацепление.

В современных автомобилях главным образом используются постоянно возбуждаемые стартеры с предварительным зацеплением с редуктором. Большая пусковая мощность сочетается в них с компактными размерами.

Конструкция и работа стартера

Стартер (рис. «Стартер с редуктором» ), по сути, состоит из электро­двигателя, механизма привода и, начиная с мощности около 1 кВт, редуктора.

При запуске шестерня стартера входит в зацепление с маховиком посредством тяго­вого реле. Стартер соединяется с шестерней привода либо напрямую, либо через редук­тор, уменьшающий частоту вращения элек­тродвигателя. Шестерня вращает коленча­тый вал ДВС через зубчатый венец маховика до тех пор, пока ДВС не начнет устойчиво работать. После запуска двигателя он может быстро разогнаться до больших оборотов. После всего нескольких зажиганий двига­тель ускоряется так мощно, что стартер уже не способен соответствовать его оборотам. ДВС «обгоняет» стартер и в результате мо­жет разогнать якорь до крайне высоких обо­ротов, если муфта свободного хода между шестерней и якорем не отменит нежелатель­ную блокировку. Как только водитель отпу­стит ключ зажигания, тяговое реле обесто­чивается и буферная пружина выводит шестерню привода из зацепления с зубча­тым венцом маховика с помощью спираль­ной канавки.

Электродвигатель стартера

Электродвигатель стартера представляет со­бой обычный электродвигатель постоянного тока. Преобладают электродвигатели с 6-ю полюсами. Доступные сегодня магнитные материалы позволили разработать стар­теры, стойкие к демагнетизации и имеющие высокоэффективный магнитный поток, обеспечивающий большую пусковую мощ­ность. Поскольку магнитное поле создается постоянным магнитом, а обратный эффект магнитного поля якоря очень мал, то возбуж­дение оказывается практически постоянным во всем диапазоне работы.

Устройство системы запуска двигателя

В систему пуска двигателя входят следующие ключевые элементы:

  • механизмы управления (замок зажигания, дистанционный запуск, система Старт-Стоп);
  • аккумуляторная батарея;
  • стартер;
  • провода определенного сечения.

Схема запуска двигателя

Ключевым элементом системы является стартер, который, в свою очередь, питается от аккумуляторной батареи. Это электродвигатель постоянного тока. Он создает крутящий момент, который передается маховику и коленчатому валу.

1. Устройство системы пуска двигателя

В обычной системе пуска двигателя можно выделить три основных механизма :

Рассмотрим, как устроен щеткодержатель : в щеткодержателе объединены 4 щетки, прижимаемые к коллектору. Две из четырех щеток находятся в изолированных оправках и соединены с обмотками якоря и далее через коллектор с обмотками возбуждения. Те и другие заземлены на корпус.

Советы и рекомендации

Кнопка запуска двигателя работает так, что водитель нажимает на нее и удерживает необходимое для пуска время. За этот отрезок времени стартер вращает коленвал, в результате происходит запуск ДВС. Затем конпку можно отпустить.

Отметим, что при выборе кнопки запуска двигателя «старт-стоп» следует учесть ряд определенных нюансов. Одним из таких моментов является вопрос фиксации данной кнопки. Оптимальным вариантом является такой, когда после нажатия контакты замкнуты, а после отпускания размыкаются. Если же кнопка будет иметь фиксацию, тогда после запуска двигателя для размыкания контактов потребуется быстро нажимать на нее еще раз.

Что касается самой кнопки, в свободной продаже представлены много доступных решений, которые отличаются по качеству исполнения, цене и другим характеристикам. Данные кнопки могут иметь подсветку, изготавливаются из пластика или металла.

По указанным причинам при выборе стоит учесть:

  • на кнопку будет подаваться сильный ток;
  • решение будет постоянно использоваться;

С учетом таких особенностей эксплуатации лучше выбирать кнопку запуска мотора с качественным наружным покрытием (например, хромирование). Такое изделие будет иметь стойкость к истиранию для сохранения приемлемого внешнего вида

Также нужно понимать, что дешевые предложения могут перегореть спустя всего несколько нажатий, так что данному аспекту следует уделить повышенное внимание

Включение стартера

При традиционном запуске водитель под­ключает напряжение аккумуляторной бата­реи (ключ зажигания в положении запуска) к реле стартера. Ток реле (около 30 А у лег­ковых автомобилей, около 70 А у грузовых) создает в реле определенную мощность. Она толкает шестерню стартера к зубчатому венцу маховика и активирует первичный ток стар­тера (200-1000 А у легковых автомобилей, около 2000 А у грузовых).

Стартер выключается при размыкании вы­ключателя зажигания, прерывающем подачу напряжения на реле стартера.

Автоматическая система пуска двигателя

Высокие требования к двигателям в плане комфорта, безопасности, качества и акустики привели к распространению автоматических систем пуска двигателей. Автоматическая система пуска двигателя отличается от тра­диционной дополнительными компонентами (рис. «Автоматическая система пуска двигателя» ). Это одно или несколько балластных реле, а также аппаратные и программные компоненты (например, ЭБУ двигателя) для управления запуском.

Водителю больше не нужно непосред­ственно контролировать ток реле стартера; ключ зажигания используется для отправки сигнала на блок управления, который затем выполняет серию проверок перед началом запуска. Проверки могут быть разными, на­пример:

  • Проверка полномочий водителя на запуск двигателя (противоугонная);
  • Проверка выключенного состояния ДВС (предотвращает зацепление шестерни стартера с зубчатым венцом вращающе­гося маховика);
  • Проверка достаточности заряда аккуму­ляторной батареи (относительно темпе­ратуры двигателя) для запуска двигателя;
  • У автоматических коробок передач — про­верка нейтрального положения, у меха­нических коробок передач — проверка состояния муфты сцепления (разомкнута ли муфта).

После успешного выполнения проверки блок управления инициирует запуск. При запуске система сравнивает обороты ДВС с обо­ротами устойчивой работы ДВС (которые могут также зависеть от температуры ДВС).

Как только двигатель набирает устойчивые обороты, ЭБУ выключает стартер. Это всегда позволяет максимально сократить время запуска, уменьшить уровень шума и износ стартера.

Этот процесс можно также взять за основу для реализации функции «пуск-стоп», когда ДВС выключается при остановке автомо­биля — например, на светофоре, и автома­тически заводится, когда это необходимо. В результате значительно экономится топливо, особенно в городском цикле.

В то же время ДВС также необходимо опти­мизировать для получения быстрой пусковой реакции. Нужен стартер с характеристиками, продлевающими срок службы, гарантирую­щий более быстрый и менее шумный запуск. Для уменьшения износа и уровня шума не­обходимо оптимизировать конструкцию шестерни и геометрию зубчатого венца ма­ховика.

Для функции «пуск-стоп» необходима система управления более высокого уровня, система управления электроэнергией с опре­делением заряда аккумуляторной батареи. Могут также потребоваться меры по стаби­лизации электрической системы автомобиля в фазе запуска для предотвращения непри­емлемого падения напряжения. Поэтому сис­тема управления и система запуска должны быть согласованы. Уровень и длительность падения напряжения должны быть ограни­чены, а система управления должна оставаться работоспособной даже при значитель­ном падении напряжения питания.

Устройство пускового двигателя

Конструкция ПД состоит из:

  • Системы питания.
  • Редуктора пускового двигателя.
  • Кривошипно-шатунного механизма.
  • Остова.
  • Системы зажигания.
  • Регулятора.

Остов двигателя состоит из цилиндра, картера и головки цилиндров. Части картера соединены между собой болтами. Штифты очерчивают центр пускового двигателя. Передаточные шестерни защищены специальной крышкой и располагаются в передней части картера, цилиндр — в верхней части. Удвоенные литые стенки создают рубашку, в которую подается вода через патрубок. Колодцы, соединенные двумя продувочными окнами, позволяют смеси поступать в картер.

По своему устройству пусковые двигатели являются двухтактными стартовыми двигателями, идущими в паре с модифицированными дизелями. Двигатели оснащаются однорежимным центробежным регулятором, напрямую подключаемым к карбюратору. Стабильность работы коленвала, как и открытие и закрытие дроссельной заслонки, регулируются в автоматическом режиме. Несмотря на малую мощность (всего 10 лошадиных сил), ПД может вращать коленвал со скоростью 3500 оборотов в минуту.

пусковой момент асинхронного двигателя

Особенности работы аккумуляторной батареи

От состояния и мощности аккумулятора будет зависеть успешный запуск двигателя. Многие знают, что для АКБ важны такие показатели, как емкость и ток холодной прокрутки. Эти параметры указываются на маркировке, например, 60/450А. Емкость измеряется в Ампер-часах. Аккумулятор имеет малое внутренне сопротивление, поэтому он может кратковременно отдавать большие токи, в несколько раз превышающие его емкость. Указанный ток холодной прокрутки 450А, но при соблюдении определенных условий: +18С° в течение не более 10 секунд.

Однако, подаваемый ток на стартер все равно будет меньше указанных значений, так как не учитывается сопротивление самого стартера и силовых проводов. Этот ток и называется пусковым током.

Справка. Внутреннее сопротивление аккумулятора в среднем составляет 2-9 мОм. Сопротивление стартера бензинового мотора в среднем 20-30 мОм. Как видно, для правильной работы необходимо, чтобы сопротивление стартера и проводов в несколько раз превышало сопротивление аккумулятора, иначе внутреннее напряжение аккумулятора при пуске будет проседать ниже 7-9 вольт, а этого допускать нельзя. В момент подачи тока напряжение исправного АКБ проседает в среднем до 10,8В в течение нескольких секунд, а затем вновь восстанавливается до 12В или чуть выше.

Аккумулятор отдает пусковой ток на стартер в течение 5-10 секунд. Затем нужно сделать паузу 5-10 секунд, чтобы аккумулятор «набрался сил».

Если после попытки запуска напряжение в бортовой сети резко падает или стартер прокручивается наполовину, то это свидетельствует о глубоком разряде АКБ. Если стартер выдает характерные щелчки, то аккумулятор окончательно сел. Среди других причин может быть поломка стартера.

Особенности запуска двигателя в зимних условиях

В зимнее время бывает трудно запустить двигатель. Масло густеет, а значит провернуть его труднее. Также часто подводит аккумулятор.

При минусовой температуре внутреннее сопротивление аккумулятора повышается, батарея садится быстрее, также неохотно отдает нужный пусковой ток. Для успешного пуска двигателя зимой АКБ должна быть полностью заряжена и не должна быть замерзшей. Дополнительно нужно следить за контактами на клеммах.

Вот несколько советов, которые помогут запустить двигатель зимой:

Тысячи водителей ежедневно заводят свои моторы и едут по делам. Начало движения возможно благодаря слаженной работе системы запуска двигателя. Зная ее устройство, можно не только запускать двигатель в самых разных условиях, но и подобрать нужные компоненты в соответствии с требованиями именно к вашему автомобилю.

Источник

Какой блок автозапуска выбрать

Перед покупкой блока необходимо определить, какие функции вам необходимы и сколько вы готовы заплатить за них. Если у вас уже стоит какая-то сигнализация, желательно найти блок автозапуска, совместимый с ней. Это позволит избежать серьезной переделки электропроводки автомобиля. Если же у вас установлена устаревшая сигнализация, которая обеспечивает только подачу звукового сигнала при попытке взлома или угона, то имеет смысл установить автозапуск, совмещенный с сигнализацией.

Блоки, которые расширяют возможности сигнализаций, обойдутся существенно дешевле, чем отдельные устройства. К примеру, релейный модуль Pandora RMD-8, совместимый с большинством сигнализаций Pandora, обойдется в 2-3 тысячи рублей. Модуль обеспечивает уверенный пуск и контроль работы как бензинового, так и дизельного двигателя. Его присоединяют к стандартной CAN-шине автомобиля, поэтому никаких серьезных переделок электропроводки не потребуется.

Более функциональные блоки с GSM-модулем обойдутся в 5-10 тысяч рублей. К примеру, стоимость модуля Starline M31 составляет 8-10 тысяч рублей. Модуль работает как с сигнализациями Starline, так и самостоятельно. При самостоятельном использовании модуля он в какой-то мере выполняет функции автосигнализации. Благодаря встроенному GPS-блоку, модуль информирует о местонахождении автомобиля, включении и выключении двигателя, позволяет проводить аудио и видеонаблюдение за происходящим в салоне. Для управления модулем используют телефон, планшет или другое устройство, работающее с соответствующей SIM-картой. Наличие трех резервных входов модуля, позволяет подключить к ним датчики дверей, вибрации или другие устройства. Единственный недостаток GSM-модулей – необходимость оплачивать трафик. Если модуль используется только в режиме обмена SMS, то ежемесячная оплата будет заметно ниже, но снизится и функциональность. Если же модуль работает в режиме постоянной связи, то оплата будет больше, но и сам модуль сможет выполнять большее число функций, среди которых возможность контролировать автомобиль в реальном времени.

Если же вам необходима полноценная сигнализация с функцией автозапуска, то неплохой вариант Starline D94 GSM Slave. Эта сигнализация обойдется в 20-25 тысяч рублей. Сигнализация оснащена встроенным датчиком вибрации, поддомкрачивания и угона. Сигнализация поддерживает подключение большого количества сторонних датчиков, что улучшает контроль безопасности. Встроенный GSM-модуль позволяет управлять сигнализацией не только с помощью штатного брелка, но и через соответствующее приложение в телефоне, смартфоне или планшете. Сигнализацию устанавливают на современные автомобили, оснащенные CAN-шиной. Единственный недостаток сигнализации – отсутствие GPS/GLONASS модуля, из-за чего невозможно отслеживание местоположения автомобиля.

Если по каким-то причинам вам не подходит GSM модуль или сигнализация, обратите внимание на традиционные устройства, использующие радиоканал. К примеру, Starline A91 Dialog

Стоимость сигнализации составляет 6-9 тысяч рублей. Брелок обеспечивает устойчивую связь с сигнализацией на расстоянии до 250 метров. Вся информация о состоянии автомобиля передается на брелок и отображается с помощью ЖК индикатора. Наличие дополнительных исполнительных каналов позволяет подключать различные устройства. К примеру, модуль управления зеркалами, предпусковой подогреватель или электрический привод, регулирующий высоту или положение сидений.

Система выпуска отработавших газов

Теперь, когда мы знаем о ряде вещей, которые мы положили (налили) в свой ​​автомобиль, давайте посмотрим на другие вещи, которые выходят из него. Система выпуска включает в себя выхлопную трубу и глушитель. Без глушителя Вы бы услышали звук тысяч маленьких взрывов из своей ​​выхлопной трубы. Глушитель гасит звук. Выхлопная система также включает в себя каталитический нейтрализатор, который использует катализатор и кислород, чтобы сжечь всё неиспользованное топливо и некоторые другие химические веществ в выхлопных газах. Таким образом, Ваш автомобиль соответствует определённым евростандартам по уровню загрязнения воздуха.

Что ещё есть, кроме всего вышеперечисленного в автомобиле? Электрическая система состоит из аккумулятора и генератора. Генератор подключен к двигателю ремнём и вырабатывает электроэнергию для зарядки аккумулятора. Аккумулятор выдаёт 12-вольтовый заряд электрической энергии, доступной ко всему в машине, нуждающемуся в электроэнергии (системе зажигания, магнитоле, фарам, стеклоочистителям, электрическим стеклоподъемникам, приводу сидений, бортовому компьютеру и ещё множеству устройств) посредством проводки автомобиля.

Теперь можно сказать, что Вы знаете всё об основах главных подсистем двигателей!

Часто встречаемые неполадки и способы их устранения

В случае если запуск пускового двигателя выполнить не удается, диагностируют проблему и пытаются ее устранить. Причиной этого может быть засорение основных механизмов и деталей двигателя, что препятствует попаданию топлива в поплавковую камеру. Устранить это можно очисткой всех деталей.

Отсутствие искры на конце свечи может быть еще одной причиной, по которой не запускается двигатель. В таком случае проверяется проводка, проходящая через магнето. Сбитая регулировка корректируется после запуска и прогрева двигателя. Некорректно выставленный угол опережения зажигания может быть одной из причин того, что ПД не запускается.

Некорректная работа двигателя может быть вызвана несколькими причинами:

  • Жиклер холостого хода был засорен.
  • Неправильно настроен винт холостого хода.
  • Загрязнение главного жиклера.
  • Неправильная настройка угла зажигания.
  • Проблемы с открытием дроссельной заслонки.
  • Засорение трубопровода.
  • Засорение пускового конденсатора двигателя.

Быстрый перегрев двигателя устраняется доливом воды, однако причин нагрева может быть несколько — к примеру, засорение пространства между головкой и цилиндром или камеры сгорания нагаром. Устраняется это очисткой всех механизмов выключенного двигателя. Однако причиной перегрева пускача не всегда является отсутствие воды или загрязнение: изначально он рассчитан на 10 минут работы за раз максимум. Более длительная работа может привести к его ускоренному износу.

однофазный двигатель с пусковой обмоткой

Проверка зазоров между электродами

Свечу зажигания выкручивают, отверстие закрывают заглушкой. Нагар на свече устраняют ее помещением на несколько минут в ванночку с бензином. Изолятор очищают специальной щеткой, корпус и электроды — металлическим скребком. Зазор между электродами проверяют щупом: его величина должна быть в пределах 0,5-0,75 миллиметра. Регулировка зазора осуществляется подгибанием бокового электрода в случае необходимости.

Исправность свечи проверяется посредством ее подключения к магнето проводами и прокручиванием коленчатого вала до появления искры. После проверки и обслуживания свеча возвращается на место и закручивается.

Проверка зазора между контактами прерывателя

Детали прерывателя протираются мягкой тканью, смоченной в бензине. Нагар, образовавшийся на поверхности контактов, зачищается надфилем. Коленчатый вал двигателя прокручивается до максимального размыкания контактов. Измерение зазора осуществляется специальным щупом. Если возникает необходимость в регулировке зазора, то при помощи отвертки ослабляется затяжка винта и крепления стойки. Фитиль кулачка смачивается несколькими каплями чистого моторного масла.

пусковой момент двигателя

Рейтинг
( 2 оценки, среднее 4.5 из 5 )
Понравилась статья? Поделиться с друзьями: