Двигатель турбовинтовой: устройство, схема, принцип работы. Производство турбовинтовых двигателей в России

Схема турбовинтового двигателя: 1 — воздушный винт; 2 — редуктор; 3 — турбокомпрессор Цветная схема турбовинтового двигателя Турбовинтовой двигатель самолёта ATR 72
Турбовинтово́й дви́гатель

— тип газотурбинного двигателя, в котором основная часть энергии горячих газов используется для привода воздушного винта через понижающий частоту вращения редуктор, и лишь небольшая часть энергии составляет выхлоп реактивной тяги[
источник не указан 700 дней
]. Наличие понижающего редуктора обусловлено необходимостью уменьшения скоростей обтекания концов лопастей до дозвуковых.

Существуют две основные разновидности турбовинтовых двигателей: двухвальные, или со свободной турбиной (наиболее распространенные в настоящее время), и одновальные. В первом случае между газовой турбиной (называемой в этих двигателях газогенератором) и трансмиссией не существует механической связи, и привод осуществляется газодинамическим способом. Воздушный винт не находится на общем валу с турбиной и компрессором. Турбин в таком двигателе две: одна приводит в движение компрессор, другая (через понижающий редуктор) — винт. Такая конструкция имеет ряд преимуществ, в том числе и возможность работы силового агрегата самолёта на земле без передачи на воздушный винт (в этом случае используется тормоз воздушного винта, а работающий газотурбинный агрегат обеспечивает самолёт электрической мощностью и воздухом высокого давления для бортовых систем). Во втором случае (как видно из названия) турбина с компрессором и винт расположены на одном валу.

Общая характеристика

Двигатель турбовинтовой принадлежит к классу газотурбинных, которые разрабатывались как универсальные преобразователи энергии и стали широко использоваться в авиации. Они состоят из тепловой машины, где расширенные газы вращают турбину и образуют крутящий момент, а к ее валу прикрепляют другие агрегаты. Двигатель турбовинтовой снабжается воздушным винтом.

двигатель турбовинтовой

Он представляет собой нечто среднее между поршневыми и турбореактивными агрегатами. Сначала в самолеты устанавливали поршневые двигатели, состоящие из цилиндров в форме звезды с расположенным внутри валом. Но из-за того, что они имели слишком большие габариты и вес, а также низкую возможность скорости, их перестали использовать, отдав предпочтение появившимся турбореактивным установкам. Но и эти двигатели не были лишены недостатков. Они могли развивать сверхзвуковую скорость, но потребляли очень много топлива. Поэтому их эксплуатация обходилась слишком дорого для пассажирских перевозок.

Двигатель турбовинтовой должен был справиться с подобным недостатком. И эта задача была решена. Конструкция и принцип работы были взяты из механизма турбореактивного мотора, а от поршневого — воздушные винты. Таким образом, стало возможным совмещение небольших габаритов, экономичности и высокого коэффициента полезного действия.

Двигатели были изобретены и сооружены еще в тридцатых годах прошлого века при Советском Союзе, а два десятилетия спустя начали их массовый выпуск. Мощность варьировалась от 1880 до 11000 кВт. Длительный период их применяли в военной и гражданской авиации. Однако для сверхзвуковой скорости они годными не были. Поэтому с появлением таких мощностей в военной авиации от них отказались. Зато гражданские самолеты в основном снабжаются именно ими.

Компрессор

Компрессор у ТВД обладает ступенчатой конструкцией, количество ступени варьируется от 2 до 6. Благодаря такой системе двигатель лучше работает с перепадами температуры и давлением, благодаря этому пилот может с легкостью регулировать обороты двигателя. Такая конструкция позволяет не только лучше работать мотору, но и из-за ступенчатой системы появилась возможность облегчить вес мотора.

Устройство турбовинтового двигателя и принцип его работы

турбовинтовой двигатель принцип работы

Конструкция мотора очень проста. В него входят:

  • редуктор;
  • воздушный винт;
  • камера сгорания;
  • компрессор;
  • сопло.

Схема турбовинтового двигателя выглядит следующим образом: после нагнетания и сжатия компрессором воздух попадает в камеру сгорания. Туда же впрыскивается топливо. Полученная смесь воспламеняется и создает газы, которые при расширении поступают в турбину и вращают ее, а она, в свою очередь, вращает компрессор и винт. Нерастраченная энергия выходит через сопло, создавая реактивную тягу. Так как величина ее не является существенной (всего десять процентов), не считается турбореактивным турбовинтовой двигатель.

Принцип работы и конструкция, впрочем, схожи с ним, но энергия здесь не полностью выходит через сопло, создавая реактивную тягу, а лишь частично, так как полезная энергия еще и вращает винт.

Сфера использования

Турбовинтовые двигатели используются в тех случаях, когда скорости полета самолета относительно невелики. На большом количестве современных транспортных самолетов применяются именно ТВД. Их преимущество прежде всего в экономичности.

Для турбовинтовых двигателей сила тяги состоит из тяги воздушного винта и силы тяги, возникающей при истечении газа из сопла. В зависимости от скорости полета самолета изменяются доли двух составляющих тяги.

При малых скоростях (крейсерских для транспортных самолетов) доля тяги от воздушных винтов значительно превышает вторую составляющую.

В ТВД часто используется комбинация компрессоров.

Реактивную тягу также создает струя раскаленных газов, выходящая из сопла двигателя.

Отношение объемов воздуха, прокачиваемых через внешний контур и через камеру сгорания, называется «степенью двухконтурности».

Двигатели, у которых степень двухконтурности высока и составляет от 2 до 10, называют турбовентиляторными, а имеющее сравнительно большой диаметр первое колесо компрессора низкого давления — вентилятором.

Преимущества турбовентиляторного двигателя от турбореактивного таковы: во‑первых, если большая часть реактивной тяги создается продуваемым воздухом, а не реактивными газами, повышается топливная эффективность, а значит, экономичность и экологичность всей силовой установки. Во‑вторых, на выходе из сопла (или сопл) холодный воздух смешивается с горячими газами, снижая общее давление смеси. Это делает двигатель менее шумным.

Рабочий вал

Бывают двигатели с одним или двумя валами. В одновальном варианте на одном валу находятся и компрессор, и турбина, и винт. В двухвальном — на одном из них установлены турбина и компрессор, а на другом — винт через редуктор. Здесь же имеются две турбины, связанные друг с другом газодинамическим способом. Одна из них предназначена для винта, а другая — для компрессора. Такой вариант наиболее распространен, так как энергия может применяться без запуска винтов. А это особенно удобно, когда самолет находится на земле.

устройство турбовинтового двигателя

Привет!

Транспортный самолет АН-8 с двигателями АИ-20.

Сегодня продолжаем более подробно говорить о типах авиационных двигателей. На повестке дня следующий тип – турбовинтовой двигатель ( ТВД ). Кто читал мои статью здесь, тот конечно, знает, что турбовинтовой двигатель – это разновидность газотурбинного.

Газотурбинный двигатель – это тепловая машина и, как в любой тепловой машине, в нем есть устройство расширения, которым является турбина. Ну, а турбина нужна в первую очередь, чтобы вращать компрессор, а во вторую, для привода различных дополнительных агрегатов, то есть полезной нагрузки. Это может быть, например, электрогенератор, винт в судовой установке, а применительно к авиации – винт воздушный или же вспомогательная силовая установка (ВСУ).

Воздушный винт

Благодаря этой детали образуется тяга, но скорость является ограниченной. Лучшим показателем считается уровень от 750 до 1500 оборотов в минуту, так как при увеличении коэффициент полезного действия начнет падать, и винт вместо разгона будет превращаться в тормоз. Явление называется «эффектом запирания». Оно вызвано лопастями винта, которые на высоких оборотах при вращении, превышающей скорость звука, начинают функционировать некорректно. Тот же самый эффект будет наблюдаться при увеличении их диаметра.

Турбина

схема турбовинтового двигателя

Турбина способна развить скорость до двадцати тысяч оборотов в минуту, но винт не сможет ей соответствовать, поэтому здесь имеется понижающий редуктор, сокращающий скорость и увеличивающий крутящий момент. Редукторы могут быть разными, но главная их задача вне зависимости от вида — снижать скорость и повышать момент.

Именно эта характеристика ограничивает использование турбовинтового двигателя в военных самолетах. Однако разработки по созданию сверхзвукового двигателя не прекращаются, хоть пока и не являются успешными. Для повышения тяги иногда двумя винтами снабжается турбовинтовой двигатель. Принцип работы при этом у них реализуется за счет вращения в противоположные стороны, но при помощи одного редуктора.

производство турбовинтовых двигателей в россии

В качестве примера можно рассмотреть двигатель Д-27 (турбовинтовентиляторный), имеющий два винтовых вентилятора, прикрепленных на свободной турбине редуктором. Это единственная модель данной конструкции, используемая в гражданской авиации. Но его успешное применение считают большим скачком по улучшению эксплуатационных качеств рассматриваемого мотора.

Авиационный ГТД Климов ГТД-350 для вертолета Ми-2

Впервые разработка ГТД-350 началась еще в 1959 году в ОКБ-117 под начальством конструктора С.П. Изотова. Изначально задача состояла в разработке малого двигателя для вертолета МИ-2.

МИ-2

На этапе проектирования были применены экспериментальные установки, использован метод поузловой доводки. В процессе исследования созданы методики расчета малогабаритных лопаточных аппаратов, проводились конструктивные мероприятия по демпфированию высокооборотных роторов. Первые образцы рабочей модели двигателя появились в 1961 году. Воздушные испытания вертолета Ми-2 с ГТД-350 впервые были проведены 22 сентября 1961 года. По результатам испытаний, два вертолетных двигателя разнесли в стороны, переоснастив трансмиссию.

Государственную сертификацию двигатель прошел в 1963 году. Серийное производство открылось в польском городе Жешув в 1964 году под руководством советских специалистов и продолжалось до 1990 года.

Малый газотурбинный двигатель отечественного производства ГТД-350 имеет следующие ТТХ:

— вес: 139 кг; — габариты: 1385 х 626 х 760 мм; — номинальная мощность на валу свободной турбины: 400 л.с.(295 кВт); — частота вращения свободной турбины: 24000; — диапазон рабочих температур -60…+60 ºC; — удельный расход топлива 0,5 кг/кВт час; — топливо — керосин; — мощность крейсерская: 265 л.с; — мощность взлётная: 400 л.с.

В целях безопасности полетов на вертолет Ми-2 устанавливают 2 двигателя. Спаренная установка позволяет воздушному судну благополучно завершить полет в случае отказа одной из силовых установок.

ГТД — 350 на данный момент морально устарел, в современной малой авиации нужны более можные, надежные и дешевые газотурбинные двигатели. На современный момент новый и перспективным отечественным двигателем является МД-120, корпорации «Салют». Масса двигателя — 35кг, тяга двигателя 120кгс.

Общая схема

Конструктивная схема ГТД-350 несколько необычна за счет расположения камеры сгорания не сразу за компрессором, как в стандартных образцах, а за турбиной. При этом турбина приложена к компрессору. Такая необычная компоновка узлов сокращает длину силовых валов двигателя, следовательно, снижает вес агрегата и позволяет достичь высоких оборотов ротора и экономичности.

В процессе работы двигателя, воздух поступает через ВНА, проходит ступени осевого компрессора, центробежную ступень и достигает воздухосборной улитки. Оттуда, по двум трубам воздух подается в заднюю часть двигателя к камере сгорания, где меняет направление потока на противоположное и поступает на турбинные колеса. Основные узлы ГТД-350: компрессор, камера сгорания, турбина, газосборник и редуктор. Системы двигателя представлены: смазочной, регулировочной и противообледенительной.

Агрегат расчленен на самостоятельные узлы, что позволяет производить отдельные запчасти и обеспечивать их быстрый ремонт. Двигатель постоянно дорабатывается и на сегодняшний день его модификацией и производством занимается ОАО «Климов». Первоначальный ресурс ГТД-350 составлял всего 200 часов, но в процессе модификации был постепенно доведен до 1000 часов. На картинке представлена общая смеха механической связи всех узлов и агрегатов.

Преимущества и недостатки

Выделим минусы и плюсы, которыми характеризуется работа турбовинтового двигателя. Преимуществами являются:

  • малый вес по сравнению с поршневыми агрегатами;
  • экономичность по сравнению с турбореактивными моторами (благодаря воздушному винту коэффициент полезного действия достигает восьмидесяти шести процентов).

Однако, несмотря на такие неоспоримые достоинства, реактивные двигатели в ряде случаев являются более предпочтительным вариантом. Скоростной предел турбовинтового мотора составляет семьсот пятьдесят километров в час. Однако для современной авиации этого очень мало. Кроме того, шум образуется очень высокий, превышающий допустимые значения Международной организации гражданской авиации.

работа турбовинтового двигателя

Поэтому производство турбовинтовых двигателей в России ограниченно. В основном их устанавливают в самолеты, которые летают на большие расстояния и с небольшой скоростью. Тогда применение оправданно.

Однако в военной авиации, где главными характеристиками, которыми должны обладать самолеты, являются высокая маневренность и бесшумная работа, а не экономичность, эти двигатели не отвечают необходимым требованиям и здесь используются турбореактивные агрегаты.

В то же время постоянно ведутся разработки по созданию сверхзвуковых винтов, чтобы преодолеть «эффект запирания» и выйти на новый уровень. Возможно, когда изобретение станет реальностью, от реактивных двигателей откажутся в пользу турбовинтовых и в военных самолетах. Но в настоящее время их можно назвать лишь «рабочими лошадками», не самыми мощными, зато стабильно функционирующими.

Рейтинг
( 1 оценка, среднее 4 из 5 )
Понравилась статья? Поделиться с друзьями: